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Wafer Map Failure Pattern Recognition and Similarity
Ranking for Large-Scale Data Sets

Ming-Ju Wu, Jyh-Shing R. Jang, Member, IEEE, and Jui-Long Chen

Abstract—Wafer maps can exhibit specific failure patterns
that provide crucial details for assisting engineers in identify-
ing the cause of wafer pattern failures. Conventional approaches
of wafer map failure pattern recognition (WMFPR) and wafer
map similarity ranking (WMSR) generally involve applying raw
wafer map data (i.e., without performing feature extraction).
However, because increasingly more sensor data are analyzed
during semiconductor fabrication, currently used approaches can
be inadequate in processing large-scale data sets. Therefore, a
set of novel rotation- and scale-invariant features is proposed for
obtaining a reduced representation of wafer maps. Such features
are crucial when employing WMFPR and WMSR to analyze
large-scale data sets. To validate the performance of the pro-
posed system, the world’s largest publicly accessible data set
of wafer maps was built, comprising 811 457 real-world wafer
maps. The experimental results show that the proposed features
and overall system can process large-scale data sets effectively
and efficiently, thereby meeting the requirements of current
semiconductor fabrication.

Index Terms—Data models, image recognition, information
retrieval, pattern recognition, semiconductor defects.

I. INTRODUCTION

WAFER map analysis is critical in daily semiconductor
manufacturing operations. Wafer maps provide visual

details that are crucial for identifying the stage of manu-
facturing at which wafer pattern failure occurs. Experienced
engineers can identify the cause of failure when a wafer map
presents a specific failure pattern. However, this is a time-
consuming process that requires using computer-aided tools.
Furthermore, because developments in semiconductor man-
ufacturing technology have been based on Moore’s law [1]
for over 50 years [2], the complexity of chip design has
increased, and post analysis has become necessary to increase
the yield of wafers. Concurrently, the capacity for wafer pro-
duction has increased in response to the ubiquitous use of
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embedded and mobile devices. For instance, approximately 15
million 8-inch equivalent wafers were produced by the Taiwan
Semiconductor Manufacturing Company (TSMC) in 2013 [3].
Therefore, efficient and effective wafer analysis tools are in
high demand [4]–[6].

Although numerous studies have investigated wafer map
failure pattern recognition (WMFPR) [7]–[17], most of them
have used raw wafer maps as input data for their classifica-
tion systems. However, previous approaches can be inadequate
in analyzing large-scale data sets due to lower accuracy.
Therefore, this paper proposes a novel set of features as a
reduced representation of wafer maps. The proposed features
are effective because they require minimal computation and
storage, while providing discriminatory power in recogniz-
ing failure patterns, thus making them suitable for large-scale
analysis of wafer maps.

This paper focuses on employing the proposed features for
WMFPR and wafer map similarity ranking (WMSR). WMFPR
is performed to identify wafer map failure patterns, whereas
WMSR assists in retrieving similar failures in other wafer
maps. To verify the performance of the proposed method,
the WM-811K dataset was built comprising 811 457 wafer
maps, in which each wafer map was collected from real-world
fabrication. Domain experts were recruited to annotate the pat-
tern type for approximately 20% of the wafer maps in the
WM-811K dataset. The experimental results showed the fea-
sibility of the proposed features and corresponding systems
for large-scale analysis of wafer maps. In addition, TSMC has
adopted the proposed system as one of their tools for wafer
map analysis, thus confirming the applicability of the proposed
features and systems.

The primary contributions of this paper are summarized as
follows.

1) A set of features extracted from wafer maps are proposed
for using WMFPR and WMSR in analyzing massive
wafer maps.

2) The WM-811K dataset1 developed in this study is the
largest known wafer map data set available to the public.

The remainder of this paper is organized as follows.
Section II describes the details of related work, and Section III
introduces the proposed features. Sections IV and V respec-
tively explain WMFPR and WMSR. A performance evaluation
of the proposed method is presented in Section VI, and the
conclusion of this study is provided in Section VII.

1http://mirlab.org/dataSet/public/
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Fig. 1. (a) Example of a new wafer map failure pattern. Based on known
failure patterns, the proposed method classified this pattern as donut, which
is reasonably accurate. (b) Example of a multipattern wafer map, which is
a combination of two known failure patterns (scratch and edge-ring). The
proposed method classified this multipattern as scratch.

II. RELATED WORK

Current WMFPR approaches can be divided into the fol-
lowing three categories:

1) Wafer-based Clustering
In [7] and [8], unsupervised-learning neural networks,
such as adaptive resonance theory (also known as
ART1), have been employed to construct clusters of
wafer maps. Domain experts have labeled the clusters
based on specific failure patterns, and the wafer maps
have been classified based on their proximity to a cluster.
An advantage of this approach is that new failure pat-
terns can be introduced for identifying wafer maps that
exhibit unknown failure patterns.

2) Region-Based Modeling
In [9]–[13], various shape-specific probability density
functions (e.g., bivariate normal distribution, principal
curve, and spherical shell) have been employed to model
the regions of failure patterns. This approach is advan-
tageous because multipattern failures can be modeled in
a single wafer map.

3) Spatial Signature Analysis
In [14]–[16], image moments have been extracted as fea-
tures from wafer maps, and a fuzzy k-nearest-neighbor
classifier has been applied for classification. Compared
with other approaches, feature extraction requires con-
siderably less computation.

The proposed WMFPR approach can be adapted to con-
struct new failure patterns if the confidence in classification
is below a specific threshold. However, when constructing
such patterns is unnecessary, the proposed method still per-
forms acceptably in classifying input wafers to the most likely
class. For instance, the class of the new failure pattern shown
in Fig. 1(a) is predicted to be Donut, which is reasonably
satisfactory. For wafers with multipattern failures, the pro-
posed method generally predicts one of the multiple patterns.
Fig. 1(b) shows a wafer map that combines two known failure
patterns, Scratch and Edge-ring, which the proposed sys-
tem classified as Scratch. Again, this result is reasonably
satisfactory for classification.

Based on the WM-811K dataset and experience of domain
experts, new or multipattern failures are only occasion-
ally encountered in real-world wafer fabrication processes.
Table I shows a comparison between the data sets of previous
approaches and that of the proposed method. Because they
lack real-world wafer data, both wafer-based clustering and

TABLE I
COMPARISON OF DATA SETS USED IN WMFPR APPROACHES

TABLE II
COMPARISON OF WMFPR APPROACHES

region-based modeling generally depend on synthetic wafer
data, which might not conform to the characteristics of actual
wafer maps.

The comparison of WMFPR approaches in Table II
shows that wafer-based clustering does not preserve the
rotation-invariant attribute [17]. In other words, two wafers
with an identical failure pattern but distinct rotation degrees
may be considered different failure patterns. In addition,
both wafer-based clustering and region-based modeling apply
the raw wafer maps rather than the extracted features as
the input for further processing. Although spatial signature
analysis extracts features from wafer maps, the involved fuzzy
k-nearest-neighbor classifier remains computationally expen-
sive when classifying large-scale data sets. Conversely, the
proposed WMFPR applies support vector machines (SVMs)
as the classifier, which is highly efficient because the failure
pattern prediction is determined by only a few critical train-
ing instances (i.e., the support vectors). By combining the
proposed features and SVM classifier, the proposed WMFPR
can predict failure patterns with acceptable accuracy and high
throughput.

Research on WMSRs is scant. In [18], wafer maps were
input into an SVM classifier to determine the degree of simi-
larity. Again, using raw wafer maps as the input is inefficient
for searching large-scale data sets. By contrast, because the
proposed WMSR is based on the proposed features, similar
wafer maps can be retrieved efficiently on a large scale.

III. FEATURE EXTRACTION

Effective features are vital for the success of pattern recog-
nition applications. In this study, discriminative features were



WU et al.: WMFPR AND SIMILARITY RANKING FOR LARGE-SCALE DATA SETS 3

Fig. 2. (a) Typical examples of wafer map failure types. (b) Projection results G following the Radon transform. (c) Radon-based features Rμ. (d) Radon-based
features Rσ .

extracted from each wafer map to form a reduced represen-
tation for subsequent classification and analysis. This section
introduces the proposed Radon- and geometry-based features.
The Radon-based features are based on the projection of
wafer maps along various directions, whereas the geometry-
based features are based on the geometric measures of regions
obtained from wafer maps. Subsequently, these two types of
feature are concatenated to form a new representation of each
wafer map.

A. Radon-Based Features

The proposed Radon-based features are based on the Radon
transform [19], which has been used successfully in computed
tomography for medical applications. The Radon transform
can generate a 2D representation of a wafer map according to
a series of projections. The concept of the Radon transform is
detailed as follows.

First, (1) is used to represent a line

x cos θ + y sin θ = ρ (1)

where ρ denotes the distance between the line and the point
of origin, and θ denotes the angle from the x-axis. Here,

the projection is performed along each straight line with spe-
cific values of ρ and θ . Thus, the Radon transform can be
expressed as

g(ρ, θ) =
m∑

x=1

n∑

y=1

M(x, y)δ(x cos θ + y sin θ − ρ) (2)

where M is a wafer map of size m × n. Each element in M is
set at 1 to indicate a defective die, and 0 otherwise. g(ρ, θ)

is the response of a projection, and δ is the impulse function

δ(k) =
{

1, if k = 0
0, otherwise

(3)

By varying ρ and θ , the response of the Radon transform
can be expressed as

G =

⎛

⎜⎜⎝

g(1, 1) g(1, 2) · · · g(1, θmax)

g(2, 1) g(2, 2) · · · g(2, θmax)
...

...
. . .

...

g(ρmax, 1) g(ρmax, 2) · · · g (ρmax, , θmax)

⎞

⎟⎟⎠ (4)

To ensure that response G is comparable among wafer maps,
minmax normalization is applied to G

G′ = G − min(G)

max(G) − min(G)
(5)
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Fig. 3. Process for identifying the most salient region of a wafer map.
(a) Original wafer map. (b) Results of the region-labeling algorithm, where
each region is assigned a different color. (c) Most salient region with the
maximal area (in this example, it is also the region with the maximal
perimeter).

(For simplicity, G represents the response following
normalization).

Fig. 2(a) shows several typical examples of wafer map fail-
ure types (with the exception of Nonpattern, which indicates
no specific failure pattern). Fig. 2(b) shows the corresponding
result of the Radon transform (G), where the x- and y-axes
represent θ and ρ, respectively. The figure shows that the 2D
representations obtained from the Radon transform effectively
represent the structure of the failure patterns. For example,
Center has a narrow but strong response in the central area
of ρ. Donut is similar to Center, except the response in the
central area is wider. By contrast, Edge-ring exhibits a strong
response along the border of the response band.

To extract the Radon-based features, row mean Gμ and row
standard deviation Gσ are calculated from G, where Gμ is the
mean response of the Radon transform over θ , and Gσ is the
variance of the response of the Radon transform over θ . Next,
Gμ and Gσ are respectively resampled using cubic interpo-
lation [20] to obtain the Radon-based features Rμ and Rσ ,
each of which has experimentally fixed dimensions of 20.
The Rμ and Rσ appear to be rotation-invariant and scale-
invariant. Fig. 2(c) and (d) respectively show Rμ and Rσ of
the corresponding nine wafer maps, demonstrating that the
Radon-based features exhibit discriminatory power among the
various types of failure.

B. Geometry-Based Features

Geometry-based features are used to measure the geomet-
ric attributes of each wafer map. Based on observations of
numerous wafer maps and consultations with domain experts,
the geometry-based features were obtained by calculating the
regional, statistical, and linear attributes, all of which are
rotation- and scale-invariant and are detailed as follows.

1) Regional Attributes: The connected defective dice in
a wafer map form regions that can indicate specific failure
patterns. Because wafer maps can exhibit multiple regions,
the most salient region (i.e., the maximal area or perimeter
of a wafer map) was examined (Fig. 3). Fig. 3(a) shows an
original wafer map. Fig. 3(b) shows the results of the region-
labeling algorithm [21] (yielding 26 regions), each of which
was assigned a different color. Finally, Fig. 3(c) shows the
most salient region with the maximal area.

Table III lists the attributes for the most salient region, as
determined according to the experimental results. Let sa and sp

indicate the most salient region with the maximal area and
the maximal perimeter, respectively. Because the wafer maps

TABLE III
REGIONAL ATTRIBUTES

vary in size, the attributes must be normalized by divid-
ing appropriate constants, as shown in (6)–(11), detailed as
follows:

• (6) Ratio of the area of sa to the area of the wafer map.
• (7) Ratio of the perimeter of sp to the radius of the wafer

map.
• (8) Maximal distance between sa (or sp) and the center

of the wafer map.
• (9) Minimal distance between sa (or sp) and the center

of the wafer map.
• (10) Ratio of the length of the major axes of the estimated

eclipses surrounding sa (or sp).
• (11) Ratio of the length of the minor axes of the estimated

eclipses surrounding sa (or sp).
• (12) Solidity, indicating the proportion of defective dice

in the estimated convex hull in sa (or sp).
• (13) Eccentricity, indicating the shape of the estimated

eclipse surrounding sa (or sp), where the value is 0 for a
circle, or 1 for a line.

2) Statistical Attributes: The number of defective
dice (NDD) is a useful statistic for wafer maps [22]. Because
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Fig. 4. Example of line detection by using the Hough transform. (a) Scratch
wafer map. (b) Result of the Hough transform for (a). Accumulator A has
local maxima at approximately (ρ, θ) = (−1, −45), which indicates the line
segment in (a).

wafer maps vary in size, the ratio of defective dice (RDD)
was measured for each wafer map to indicate the degree
of failure. In particular, the global and local RDDs were
measured, where the global RDD represents the entire wafer
map, and the local RDD represents specific zones of a
wafer map. In this study, the local RDD was measured for the
two outer-most rings (based on an 8-connected neighborhood)
of each wafer map, because defective dice that occur at the
boundary of a wafer map tend to indicate a specific type of
failure, such as Edge-ring and Edge-local.

3) Linear Attribute: The Hough transform [19], which was
applied in [23], was used in the current study to detect the lines
in each wafer map. The Hough transform algorithm is detailed
as follows. First, the 2D accumulator A must be created to
indicate the possibility of lines occurring in a map. For each
defective die in a wafer map, the following two steps must be
performed to obtain A

1) Given a defective die’s position (x, y), find a set
{(ρ, θ) |x cos θ + y sin θ = ρ }. Each pair of (ρ, θ)

represents the corresponding virtual line passing
through (x, y).

2) Increase A(ρ, θ) by 1 for each instance of (ρ, θ).
After all defective dice in a wafer map are considered,

the local maxima in A indicates the possible lines within
that map. Fig. 4 shows an example of the Hough transform.
Fig. 4(a) shows a Scratch wafer map, and Fig. 4(b) depicts
the result of the Hough transform. Here, θ is measured clock-
wise relative to the positive x-axis. The local maxima occur at
(ρ, θ) = (−1,−45), indicating the line segment in the orig-
inal wafer map. In this study, a line is established when its
length is longer the 10% of the wafer’s diameter. Moreover, a
broken line is identified as a line when the length of a gap is
less than 3% of the wafer’s diameter. Finally, the number of
detected lines is used as the feature.

IV. WAFER MAP FAILURE PATTERN RECOGNITION

This section introduces the WMFPR, which involves using
the proposed features. The flowchart in Fig. 5 shows that the
WMFPR is based on a two-stage framework. Stage 1 entails
determining whether a wafer map exhibits a failure pattern,
and Stage 2 involves identifying the pattern type. An SVM
is used as a classifier at each stage because of its superior
efficiency in large-scale data set applications [24]. During the
training phase, the SVMs determine the support vectors in the
training data, which are applied to predict new wafer maps

Fig. 5. Flowchart of the proposed WMFPR. Stage 1: the SVM determines
whether a failure pattern exists. Stage 2: the SVM identifies the wafer map
failure pattern.

Fig. 6. Example of the hyperplane (i.e., decision boundary) of an SVM. An
SVM is designed to determine the maximum-margin hyperplane separating
two classes of data.

during the test phase. The main advantage of the two-stage
framework is that the parameters can be tuned to optimize the
tradeoff between the false-positive rate and the false-negative
rate at Stage 1. The basic concept of the SVM is described
in Section IV-A, and the maintenance of the ground truth is
explained in Section IV-B.

A. Support Vector Machine for the WMFPR

The function of an SVM [25] is to identify the hyperplane
(i.e., decision boundary) with the widest separation between
two classes of training data, as shown in Fig. 6. The hyperplane
in Fig. 6 is expressed as wTx + b = 0, which satisfies the
constraints in (14)

{
wTxi + b ≥ 1 ∀yi ∈ 1
wTxi + b ≤ −1 ∀yi ∈ −1

(14)

where w is a normal vector, b is the bias term in the hyper-
plane, xi is a d-dimensional feature vector of a wafer map, and
yi is the label of xi, which is set at either 1 or -1 to distinguish
between the two classes. The training set can be expressed as
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{(xi, yi)|xi ∈ Rd, yi ∈ {1,−1},∀i = 1, . . . , l}, where l denotes
the number of wafer maps in the training set.

An SVM is designed to determine the hyperplane at which
the margin between two classes of data is maximized, where
the margin is the distance between wTxi + b = ±1. A wider
margin indicates that the classifier exhibits superior general-
ization capability. However, the constraint of (14) is too strict
when an SVM is applied to nonseparable data sets, resulting in
the nonexistence of such a hyperplane. This problem is solved
by introducing the slack variable ξi, which allows not every xi

to be necessary on the right side of the hyperplane. Then (14)
can be reformulated as

yi
(
wTxi + b

) ≥ 1 − ξi (15)

where ξi applies to one of the following three cases
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

If xi is correctly classified and outside the margin,
then ξi = 0.

If xi is correctly classified and inside the margin,
then 0 < ξi ≤ 1.

If xi is missclassified,
then ξi > 1.

(16)

Next, the search for the optimal hyperplane can be formu-
lated as the following constrained optimization problem

⎧
⎪⎪⎨

⎪⎪⎩

min J(w, b, ξ) = 1
2‖w‖2 + c

l∑
i=1

ξi

subject to yi
(
wTxi + b

) ≥ 1 − ξi,

ξi ≥ 0,∀i = 1, . . . , l

(17)

where c is a predefined cost value. Because (17) involves
an inequality constraint, the Lagrange multiplier and Karush-
Kuhn-Tucker conditions are applied to solve the problem.
Introducing the Lagrange multiplier enables (17) to be refor-
mulated as follows⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min L(w, b, ξ, α, λ) = 1
2‖w‖2 + c

l∑
i=1

ξi −
l∑

i=1
αiξi

−
l∑

i=1
λi
[
yi
(
wTxi + b

)− 1 + ξi
]

subject to αi, λi ≥ 0,∀i = 1, . . . , l

(18)

The corresponding Karush-Kuhn-Tucker conditions are
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂L
∂w = 0 ⇒ w =

l∑
i=1

λiyixi

∂L
∂b = 0 ⇒

l∑
i=1

λiyi = 0
(19)

The hyperplane can then be expressed as

g(x) = wTx + b =
l∑

i=1

λiyixT
i x + b =

Ns∑

i=1

λiyixT
i x + b (20)

Notably, the Lagrange multiplier λi can be either zero or
positive. In other words, the optimal hyperplane is the linear
combination of xi with λi > 0; these xi are called support
vectors, which support the maximum-margin and create the
optimal hyperplane.

Moreover, a linear mapping φ can be applied to transform
each xi into a new space with high dimensionality to facilitate

Fig. 7. Examples of the support vectors for the failure type center based
on the screenshot of the web interface. Domain experts must inspect the
support vectors further to ensure that the ground truth labeling is accurate
for two reasons. First, support vectors tend to be close to the maximum-
margin hyperplane; consequently, they are more likely to be mislabeled.
Second, SVM prediction is determined only by support vectors; labeling them
inappropriately is detrimental to the accuracy of an SVM.

data separation. According to the kernel trick, the inner prod-
uct of the new space has the equivalent representation in the
original space

〈
φ(xi), φ(xj)

〉 = K
(
xi, xj

)
(21)

where xi and xj are feature vectors. This indicates that the inner
product of φ(xi) and φ(xj) can be obtained without explic-
itly computing φ(xi) and φ(xj). Consequently, the optimal
hyperplane also has a similar representation

g(x) =
Ns∑

i=1

λiyiφ(xi)
Tφ(x) + b =

Ns∑

i=1

λiyiK(xi, x) + b (22)

where Ns denotes the number of support vectors. Here, the
widely used Radial basis function (RBF) kernel [26] is adopted
in (23)

K(xi, x) = exp

(
−‖xi − x‖2

σ 2

)
(23)

Equations (22) and (23) can then be used to predict the class
of feature vector x of a new wafer, depending on whether the
sign of g(x) is positive or negative. However, the mentioned
SVM is used for binary-class classification, which is applicable
at Stage 1. At Stage 2, eight pattern types require classifica-
tion, which can be achieved by applying the one-against-one
technique. Consequently, 8(8-1)/2= 28 SVM classifiers can be
constructed for each pair of classes. Then the pattern type for
a wafer map is predicted based on the maximal vote among
the 28 classifiers.

B. Ground Truth Maintenance With Support Vectors

Because support vectors are used for supporting the max-
imal margin, they tend to be close to the maximum-margin
hyperplane; consequently, support vectors are more likely to
be mislabeled. In general, if these support vectors are labeled
appropriately, they are likely to be located at the boundary
of the feature space of a specific class. Fig. 7 shows typi-
cal examples of the support vectors of Center, in which the
appearance of these support vectors are diverse, and some
of which could be ambiguous. For example, it would not be
unreasonable to label Wafer Map 4 as Donut, whereas Wafer



WU et al.: WMFPR AND SIMILARITY RANKING FOR LARGE-SCALE DATA SETS 7

Maps 5 and 6 could be labeled as Local. Because SVM predic-
tion is determined using support vectors alone, labeling them
inappropriately is detrimental to the accuracy of an SVM.
Therefore, we provided a web interface for domain experts
who inspected and relabeled the support vectors, and the SVM
was retrained to improve the robustness of the recognition
system. In particular, this inspection process can effectively
stabilize the recognition system when new failure patterns are
introduced.

V. WAFER MAP SIMILARITY RANKING

WMSR is used to retrieve wafer maps that are similar to
a given queried wafer map. Because wafer maps with similar
failure patterns tend to have identical failure causes, WMSR
can assists engineers in identifying the root cause of simi-
lar failure patterns. The framework of the proposed WMSR
involves two stages:

• Stage 1: Search the top-n similar wafer maps based on
the Euclidean distance of the extracted features.

• Stage 2: Rank the top-n candidates (from Stage 1)
based on the 2D normalized correlation coefficient
(i.e., known as template matching [19] in the field of
image processing).

Because wafer maps vary in size, it is necessary to first nor-
malize the size of both the queried wafer map and all wafer
maps in the dataset. Then 2D normalized correlation coeffi-
cient in (24) can be computed to obtain the similarity score
between two wafer maps.

s(Q, C) =
m∑

x=1

n∑

y=1

[
Q(x, y) − Q

] [
C(x, y) − C

]

·
⎛

⎝
m∑

x=1

n∑

y=1

[
Q(x, y) − Q

]2 m∑

x=1

n∑

y=1

[
C(x, y) − C

]2

⎞

⎠
−0.5

(24)

where Q denotes a queried wafer map with size m × n, Q is
the mean of Q, C represents a candidate wafer map, and C
is the mean of C. The similarity score s(Q, C) ranges from
-1 to 1, where a higher value indicates greater similarity.

In addition, the similarity between the most salient regions
should also be considered (Fig. 3(c) shows an example of the
most salient region). Therefore, the similarity score for Stage 2
is expressed as

similarity(Q, C) = βs(Q, C) + (1 − β)s
(
Q′, C′),

0 ≤ β ≤ 1 (25)

where s(Q′, C′) is the score between the most salient regions
of a query and candidate wafer maps. β represents the weight-
ing of s(Q, C) and s(Q′, C′). Finally, after the similarity scores
in (25) are computed for all of the candidate wafer maps, the
similarity scores are sorted in descending order to obtain the
similarity ranking.

Fig. 8 shows the results of three examples of WMSR when
β was respectively set to 1, 0, and 0.5 in Fig. 8(a)–(c),
respectively. The leftmost wafer map is the input query wafer
map, whereas the other wafer maps were retrieved from the

Fig. 8. The top-five similar wafer maps were obtained from the training
set by using different β in (25). The boundary of the most salient region of
each wafer map was surrounded by a black outline. (a) β = 1, indicating the
similarity score is based on s(Q, C) only. (b) β = 0, indicating the similarity
score is based on s(Q′, C′) only. (c) β = 0.5, indicating the similarity score
is the average of s(Q, C) and s(Q′, C′).

training set (the leftmost column lists three identical input
query wafer maps). For each wafer map, the boundary of the
most salient region was surrounded by a black outline. As
shown in Fig. 8(a), the results were based on only s(Q, C). As
shown in Fig. 8(b), the results were based on only s(Q′, C′),
leading to the retrieval of wafer maps with similar regions but
dissimilar noise, such as the rank-3 wafer map. Fig. 8(c) shows
the results were the fusion of s(Q, C) and s(Q′, C′), which typ-
ically demonstrate highly desirable performance. Specifically,
the wafer map that was ranked 5 in Fig. 8(c) is typically a more
favorable candidate than the wafer map that was ranked 5 in
Fig. 8(a) and (b). Therefore, β was set to 0.5 in this study.

VI. PERFORMANCE EVALUATION

This section introduces the WM-811K dataset
(Section VI-A) and experimental settings (Section VI-B),
and presents the results of using the proposed WMFPR
(Section VI-C) and WMSR (Section VI-D), as well as their
computation times (Section VI-E).

A. Data Collection

The WM-811K dataset comprises 811 457 wafer maps that
were collected from 46 293 lots in real-world fabrication.
Although each lot should contain 25 wafer maps, some were
blank (and thus removed) because of sensor failure or for
other unknown reasons. The histogram of the number of dice
in Fig. 9 shows that the number of dice varies considerably.
Specifically, there are only 696 599 unique wafer maps, regard-
less of their failure bin types (the element of a wafer map is
set at 1 to indicate good dice or 2 to indicate defective dice).

The data set was divided into a training set (to construct
the recognition system) and a test set (to test the system
performance). For creating the training set, a diverse range
of wafer maps were selected to include each pattern type to
ensure that the constructed model would be robust. Conversely,
the test set comprised wafer maps that were randomly selected
by domain experts. Approximately 20% of the wafer maps
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Fig. 9. Histogram of the number of dice for the wafer maps in the WM-811K
data set.

(a)

(b)

Fig. 10. Wafer map distribution in training and test sets. (a) Distribution
of wafer map failure patterns (eight types). (b) Distribution of pattern and
nonpattern wafer maps.

were labeled from one of the nine types (54 356 in the training
set and 118 595 in the test set); each type is shown in Fig. 2(a),
which includes Center, Donut, Edge-local, Edge-ring, Local,
Near-full, Random, Scratch and Nonpattern (the first eight
types are regarded as Pattern). In addition, both training and
test sets comprised unique wafer maps. Fig. 10 shows the
distributions for both sets.

B. Experimental Settings

Wafer maps are generally accompanied by noise. However,
identifying a single noise reduction scheme that can reduce
noise only without producing detrimental effects on crucial
patterns is difficult. As shown in Fig. 11, noise reduc-
tion effectively exposes Donut in Fig. 11(a). Conversely, the
same noise reduction destructs Edge-ring in Fig. 11(b). In
this study, feature extraction was independently performed

Fig. 11. Effects of noise reduction. (a) Noise reduction successfully exposes
donut. (b) Same noise reduction destructs edge-ring.

Fig. 12. Detection error tradeoff (DET) curve for various feature sets for
the WMFPR, where the value of cnonpattern was fixed at 1 to determine
an optimum value of cpattern in the SVM. The bold annotation represents
the value of cpattern. The overall features achieved the optimal curve in the
DET plot.

with and without noise reduction for each wafer map. The
combination with- and without- noise-reduction features was
used as the overall features, because it was verified to
achieve optimal performance (Fig. 12). The dimensions of the
geometry-based and Radon-based features were 18 and 40,
respectively. Consequently, the overall feature dimension was
(18 + 40) × 2 = 116. The noise reduction was based on the
median filter. For the classifier, the well-known SVM tool
LIBSVM [27] was adopted. The OpenMP library was used
to enable the LIBSVM to support the parallel computing
technique. The evaluation environment was operated on a per-
sonal computer with an Intel Core i7 2600 CPU (4 cores),
16 GB RAM, and MATLAB R2012a.

C. Failure Pattern Recognition Results

In using the proposed WMFPR, Stage 1 was designed to
identify whether each wafer map exhibited a failure pattern.
Here, false-positive (FP) is defined as the rate of misclassi-
fying Nonpattern as Pattern, whereas false-negative (FN) is
the rate of misclassifying Pattern as Nonpattern. The trade-
off between FP and FN can be adjusted using c in (17). Let
cnonpattern and cpattern denote the cost value of all Nonpattern
and Pattern wafer maps in the training set, respectively. The
value of cnonpattern was fixed at 1 for determining an appro-
priate value of cpattern to obtain reasonable results for both
FP and FN. Fig. 12 shows the detection error tradeoff (DET)
curve obtained using various feature sets when the value of
cpattern varies. Specifically, an SVM was trained according to



WU et al.: WMFPR AND SIMILARITY RANKING FOR LARGE-SCALE DATA SETS 9

Fig. 13. (a) Combined confusion matrix for Stages 1 and 2 on the test set.
(b) Wafer maps are easily confused with local, although users generally accept
the predictions because these wafer maps seem to saddle across the boundary
of two types.

each value of and the resulting FN and FP were reported in the
test set. In this figure, the bold annotation indicates the values
of cpattern. In general, a DET curve close to the origin indicates
favorable performance. FN was less sensitive to cpattern when
with-noise-reduction features were used. Conversely, FP was
less sensitive to cpattern when without-noise-reduction features
were used. This indicates the two feature sets may contain
distinct discriminative information. As expected, the overall
features (the combination with- and without-noise-reduction
features) can be used to achieve the optimal curve in the DET
plot. When cpattern is set at 20 (the closet point to the origin)
for evaluating the overall features, minimal error is produced.
Therefore, the overall features with cpattern= 20 were applied
in this study.

At Stage 2, the proposed WMFPR identified the wafer map
failure pattern after it was classified as a Pattern wafer. Fig. 10
shows that the number of samples for each failure type in the
WM-811K dataset was unevenly distributed. However, each

TABLE IV
ACCURACY COMPARISON FOR WMFPR

failure pattern type is equally crucial, regardless of the number
of samples for a specific failure pattern. Therefore, a rela-
tively higher cost value c was assigned to the pattern types
with relatively fewer samples. Specifically, the new cost value
for each pattern type was proportional to the inverse of its
corresponding sample size in the training set.

Fig. 13(a) shows the combined confusion matrix for
Stages 1 and 2 on the test set (overall accuracy = 94.63%). In
the figure, the annotations (ground truth) are shown in the left
column, and the predictions by the proposed system are in the
top row. The diagonal elements represent the recognition rate
of each type. The matrix shows that Local was frequently con-
fused with other failure types. Fig. 13(b) shows several wafer
maps that were misclassified as Local. Although the wafer
maps were misclassified, users generally accept the prediction
because these wafer maps seem to saddle across the boundary
of two types. This implies that the users’ degree of satisfaction
would likely be higher, as indicated by the overall accuracy
(94.63%).

Table IV shows the comparison between the accuracy of
the proposed method and that of deep learning and spatial
signature analysis. Deep learning [28] has been demonstrated
to produce state-of-the-art performance in object recognition
in recent years [29]. Unlike wafer-based clustering, which is
based on unsupervised-learning neural networks, deep learn-
ing is based on supervised-learning neural networks and,
therefore, the results can be directly compared. In this study,
we applied the well-known deep learning implementation
method developed by Hinton [30] with default parameter
settings. The results indicated that the proposed method is
superior to deep learning. The input of deep learning was
only raw wafer maps, indicating the effectiveness of the pro-
posed features, which bear semantic meanings. In addition,
the proposed method outperforms spatial signature analy-
sis, indicating that the proposed semantic-bearing features
are superior to the image moment features used in spatial
signature analysis.

D. Similarity Ranking Results

Fig. 14 shows the results of two examples of WMSR.
Different data sets were applied using the same queried wafer
map. In Fig. 14(a), the upper left wafer map is the queried
wafer map, whereas the other maps were retrieved from the
data set. First, a search was performed for all Center wafer
maps in the training set (3462 wafers) because the queried
wafer map is Center. The figure shows that the retrieved wafer
maps are similar to the queried wafer map. Next, Fig. 14(b)
shows the same query with the full data set (811 457 wafers).
The figure shows that the search results from the full data
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Fig. 14. WMSR results from two examples of WMSR in different scales
that involved using different data sets. The upper-left image shows the queried
wafer map, and the remaining wafer maps were retrieved from the corre-
sponding data sets. Search was performed for (a) all center wafer maps in the
training set (3462 wafers) and (b) the full data set (811 457 wafers).

set were comparable to those from the Center subset. This
implies that the proposed system achieved high stability; more-
over, the system successfully retrieved similar wafer maps that
were unlabeled (approximately 80% of the wafer maps in the
WM-811K dataset are unlabeled).

E. Computation Time

Efficiency is critical to the success of the proposed WMFPR
and WMSR when deployed in fabrication. Table V lists the
computation times used in each phase of the proposed method
for the WMFPR. Although the feature extraction was the most
time-consuming phase, the mean computation time for each
wafer was 0.0737 s. The training and test phases were quite

TABLE V
COMPUTATION TIME OF THE PROPOSED METHOD FOR WMFPR

Fig. 15. Computation time comparison for WMFPR.

efficient as a result of the SVM. The SVM kernel evaluation
in (21) accounted for most of the computation time. When
parallel computing (using OpenMP library) was employed
to boost the SVM kernel evaluation, the processing speed
increased by a factor of approximately 3 to 4. Because the
online WMFPR involves only feature extraction (0.0737 s
per wafer) and SVM evaluation for prediction (0.0005 s per
wafer), the proposed system can analyze more than one million
wafer maps per day on a single PC (86400/0.0742 > 106). In
other words, the proposed WMFPR meets the daily production
requirements of a modern fabrication facility.

Fig. 15 shows the computation time comparison for
WMFPR. Deep learning was slow when training, whereas spa-
tial signature analysis was slow when testing. Furthermore, the
proposed method achieved the minimal training and test time
(372 + 272 = 644 s), indicating our approach has the advan-
tage of possible parameter fine-tuning for optimizing system
performance with a large-scale dataset. Because spatial sig-
nature analysis involved the use of simpler features (image
moments) than the proposed features, it was faster than the
proposed method in feature extraction time and total time, but
exhibited lower accuracy. In addition, both methods were more
efficient than deep learning regarding the total time, indicat-
ing the importance of using features for large-scale wafer map
data sets.

Fig. 16 shows the WMSR search times, where the x- and
y-axes show the number of wafers and search time for the top-
100 similar wafer maps. The search time is estimated based
on the assumption that the feature vector of each wafer map is
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Fig. 16. WMSR search time versus the number of wafers on WM-811K
data set. The top-100 similar wafer maps were obtained from 811 457 wafers
in 2.5 s.

obtained in advance.2 Fig. 16 shows that the search time was
approximately 1.0 s for 100 000 wafers, and 2.5 s for 811 457
wafer maps. Based on using effective features, the proposed
WMSR is highly efficient for large-scale data sets.

VII. CONCLUSION

In contrast to conventional approaches that generally involve
applying only raw wafer maps for WMFPR and WMSR tasks,
this study provides an alternative and superior method for
using effective features for in-depth analysis. The proposed
wafer-specific features are generally applicable to wafers of
various die sizes and recipes based of the rotation- and
scale-invariant design. This reduced representation is also cru-
cial to the success of the proposed WMFPR and WMSR.
The WMFPR achieved 94.63% accuracy for the test set
(118 595 wafer maps). In addition, the efficiency and effec-
tiveness of the WMSR was validated using a large-scale data
set of wafer maps. The experimental results show that the time
to retrieve the top-100 similar wafers from the WM-811K
dataset (811 457 wafer maps) is only 2.5 s. The proposed
features, combined with the classifier and similarity rank-
ing mechanism, are effective tools for analyzing large-scale
data sets.

For future research, further error analysis would assist in
identifying additional robust features that are applicable to
both WMFPR and WMSR. In addition, applying dimension-
ality reduction schemes, such as principal component analysis
and linear discriminant analysis, would assist in determining
whether a low-dimension feature set can obtain comparable
performance. Finally, alternative machine learning techniques,
such as learning to rank and relevance feedback to WMSR,
should be examined.

2Once the fabrication has acquired a wafer map, the corresponding feature
vector is extracted and stored automatically in the workflow of the TSMC.
In other words, all the features of the wafer maps should be available before
the similarity search begins.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, no. 8, pp. 114–117, Apr. 1965.

[2] C. A. Mack, “Fifty years of Moores law,” IEEE Trans. Semicond.
Manuf., vol. 24, no. 2, pp. 202–207, May 2011.

[3] TSMC. (2013). Quarterly Results. [Online]. Available: www.tsmc.com/
uploadfile/ir/quarterly/2013/4mMqe/E/4Q13ManagementReport.pdf

[4] Q. P. He and J. Wang, “Large-scale semiconductor process fault
detection using a fast pattern recognition-based method,” IEEE Trans.
Semicond. Manuf., vol. 23, no. 2, pp. 194–200, May 2010.

[5] R. Baly and H. Hajj, “Wafer classification using support vector
machines,” IEEE Trans. Semicond. Manuf., vol. 25, no. 3, pp. 373–383,
Aug. 2012.

[6] C. F. Chen, W. C. Wang, and J. C. Cheng, “Data mining for yield
enhancement in semiconductor manufacturing and an empirical study,”
Expert Syst. Appl., vol. 33, no. 1, pp. 192–198, Jul. 2007.

[7] F. L. Chen and S. F. Liu, “A neural-network approach to recognize defect
spatial pattern in semiconductor fabrication,” IEEE Trans. Semicond.
Manuf., vol. 13, no. 3, pp. 366–373, Aug. 2000.

[8] C. F. Chen, S. C. Hsu, and Y. J. Chen, “A system for online detection
and classification of wafer bin map defect patterns for manufacturing
intelligence,” Int. J. Prod. Res., vol. 51, no. 8, pp. 2324–2338, Feb. 2013.

[9] J. Y. Hwang and W. Kuo, “Model-based clustering for integrated circuits
yield enhancement,” Eur. J. Oper. Res., vol. 178, no. 1, pp. 143–153,
Apr. 2007.

[10] T. Yuan and W. Kuo, “A model-based clustering approach to the
recognition of spatial defect patterns produced during semiconductor
fabrication,” IIE Trans., vol. 40, no. 2, pp. 93–101, 2008.

[11] T. Yuan and W. Kuo, “Spatial defect pattern recognition in
semiconductor manufacturing using model-based clustering and
Bayesian inference,” Eur. J. Oper. Res., vol. 190, no. 1, pp. 228–240,
2008.

[12] T. Yuan, S. J. Bae, and J. I. Park, “Bayesian spatial defect pattern recog-
nition in semiconductor fabrication using support vector clustering,”
Int. J. Adv. Manuf. Technol., vol. 51, nos. 5–8, pp. 671–683, 2010.

[13] T. Yuan, W. Kuo, and S. J. Bae, “Detection of spatial defect patterns
generated in semiconductor fabrication process,” IEEE Trans. Semicond.
Manuf., vol. 24, no. 3, pp. 392–403, Aug. 2011.

[14] K. W. Tobin, S. S. Gleason, T. P. Karnowski, S. L. Cohen, and
F. Lakhani, “Automatic classification of spatial signatures on semi-
conductor wafer maps,” in Proc. Metrol. Insp. Process Control
Microlith., Santa Clara, CA, USA, 1997, pp. 434–444.

[15] K. W. Tobin, S. S. Gleason, and T. P. Karnowskii, “Feature analysis
and classification of manufacturing signatures based on semiconductor
wafermaps,” in Proc. Mach. Vis. Appl. Ind. Insp., San Jose, CA, USA,
1997, pp. 14–25.

[16] T. P. Karnowski, K. W. Tobin, S. S. Gleason, and F. Lakhani, “The appli-
cation of spatial signature analysis to electrical test data: Validation
study,” in Proc. Insp. Process Control Microlith. XIII, Santa Clara,
CA, USA, 1999, pp. 530–540.

[17] C. H. Wang, “Recognition of semiconductor defect patterns using spa-
tial filtering and spectral clustering,” Expert Syst. Appl., vol. 34, no. 3,
pp. 1914–1924, 2008.

[18] T. J. Hsieh, Y. S. Huang, C. Liao, and C. F. Chien, “A new morphology-
based approach for similarity searching on wafer bin maps in semi-
conductor manufacturing,” in Proc. 16th Int. Conf. Comput. Support.
Coop. Work Design, Wuhan, China, 2012, pp. 869–874.

[19] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
Harlow, U.K.:Prentice-Hall, 2008.

[20] R. G. Keys, “Cubin convolution interpolation for digital image pro-
cessing,” IEEE Trans. Audio Speech Signal Process., vol. 29, no. 6,
pp. 1153–1159, Dec. 1981.

[21] R. M. Haralick and L. G. Shapiros, Computer and Robot Vision.
Reading, MA, USA: Addison-Wesley, 1993.

[22] S. Cunningham and S. MacKinnon, “Statistical methods for visual defect
metrology,” IEEE Trans. Semicond. Manuf., vol. 11, no. 1, pp. 48–53,
Feb. 1998.

[23] K. P. White, B. Kundu, and C. M. Mastrangelo, “Classification of defect
cluster on semiconductor wafers via Hough transform,” IEEE Trans.
Semicond. Manuf., vol. 2, no. 2, pp. 272–278, May 2008.

[24] T. Y. Liu et al., “Support vector machine with a very large-scale
taxonomy,” ACM SIGKDD Explor. Newslett., vol. 7, no. 1, pp. 36–43,
Jun. 2005.

[25] C. Cortes and V. Vapnik, “Support vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1995.



12 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 28, NO. 1, FEBRUARY 2015

[26] C. W. Hsu, C. C. Chang, and C. J. Lin. (2014, Jul. 12). A
practical guide to support vector classification. [Online]. Available:
http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf

[27] C. C. Chang and C. J. Lin. (2010). LIBSVM: A library for Support Vector
Machine. [Online]. Available: http://www.csie.ntu.edu.tw/∼ cjlin/libsvm

[28] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[29] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[30] G. E. Hinton. (2014, Jul. 12). Training a Deep Autoencoder
or a Classifier on MNIST Digits. [Online]. Available: http://
www.cs.toronto.edu/∼hinton/MatlabForSciencePaper.html

Ming-Ju Wu received the M.S. degree in computer
science from the National Chiao Tung University,
Hsinchu, Taiwan, in 2009. He is currently pursu-
ing the Ph.D. degree in computer science from
the National Tsing Hua University, Hsinchu. His
research interests include information retrieval,
image processing, and machine learning.

Jyh-Shing R. Jang (M’93) received the Ph.D.
degree in electrical engineering and computer sci-
ence from the University of California, Berkeley,
Berkeley, CA, USA. He studied fuzzy logic and
artificial neural networks with Prof. L. Zadeh,
the father of fuzzy logic. He joined MathWorks,
Natick, MA, USA, and has co-authored the
Fuzzy Logic Toolbox (for MATLAB). He was a
Professor with the Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan,
from 1995 to 2012. Since 2012, he has been

a Professor with the Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan. His current research
interests include machine learning and pattern recognition, with applications
to speech recognition/assessment/synthesis, music analysis/retrieval, image
identification/retrieval, and implementing industrial software for pattern recog-
nition and computational intelligence. He has over 9000 Google Scholar
citations for his seminal paper on adaptive neuro-fuzzy inference systems,
published in 1993. He has published a book entitled Neuro-Fuzzy and Soft
Computing, two books on MATLAB programming, and a book on JavaScript
programming. He has also maintained toolboxes for machine learning and
speech/audio signal processing and online tutorials on data clustering and
pattern recognition and audio signal processing and recognition. For more
information, see http://mirlab.org/jang

Jui-Long Chen received the M.S. degree in materi-
als science and engineering from the National Chung
Hsing University, Taichung, Taiwan, in 2004. He has
been with the Taiwan Semiconductor Manufacturing
Company, Hsinchu, Taiwan, since 2004, where
he is currently a Technical Manager with the
Manufacturing Technology Center. His research
interests include developing engineering solutions
for advanced technology yield enhancement and
system integration functions for semiconductor
manufacturing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


